خانه / کتاب / Seismic Imaging, Fault Damage and Heal – تصویرسازی لرزه‌ای، خسارت گسل و راهکار اصلاحی

Seismic Imaging, Fault Damage and Heal – تصویرسازی لرزه‌ای، خسارت گسل و راهکار اصلاحی

📘 تصویرسازی لرزه‌ای، خسارت گسل و راهکار اصلاحی

پروفسور «یونگ گنگ لی»

📘Seismic Imaging, Fault Damage and Heal
Yong-Gang Li

پروفسور «یونگ گنگ لی»، پژوهشگر و متخصص امواج زمین‌لرزه‌ای در مناطق گسلی دانشکده علوم زمین، دانشگاه کالیفرنیای جنوبی است. وی در این کتاب به مدل‌سازی معادلات ساختاری، فیزیکی و مکانیکی زلزله، بررسی و تقویت درک درست از پدیده زلزله، شناسایی بهتر علل و پی‌آمدهای زلزله، بهره‌گیری مناسب از روش‌های پیشرفته در زلزله‌شناسی و استفاده از دانش و تکنیک‌های کاربردی در زلزله، ارزیابی خطرات زلزله‌های احتمالی در ساختار زمین‌ساختی مناطق زلزله‌خیز سراسر جهان به‌منظور کاهش حوادث ناگوار زلزله می‌پردازد.

این کتاب برای  کلیه علاقه‌مندان، پژوهشگران و دانشجویان تحصیلات تکمیلی در علوم زمین مناسب می‌باشد.


💠Year: 2014| Language: English| Pages: 377| Size:16.5 MB

◀دریافت مستقیم ▶ ◀ Direct download▶

📌 برای دانلود تندتر و آسان‌تر ، پیشنهاد می‌شود از نرم‌افزارهای مدیریت دانلود بهره‌گیری نمایید.
📌 چنانچه لینک دانلود فایلی دچار اشکال بود، ما را باخبر سازید
Note: If the download link doesn’t work, please Report Link Problem

📘Presenting current approaches in observational and computational seismology, this book introduces advanced methods and techniques by means of case studies in earthquake research. Among others these include solving inverse seismologic problems, tomography for structure imaging, characterizing fault damage and healing, seismicity analysis for determining pre-shock moment release, and coupled solid-fluid models.

📖Seismic Imaging, Fault Damage and Heal: An Overview

References
1 Applications of Full-Wave Seismic Data Assimilation (FWSDA)
1.1 Numerical Solutions of Seismic Wave Equations
1.1.1 Stable Finite-Difference Solutions on Non-Uniform, Discontinuous Meshes
1.1.2 Accelerating Finite-Difference Methods Using GPUs
1.1.3 The ADER-DG Method
1.1.4 Accelerating the ADER-DG Method Using GPUs
1.2 Automating the Waveform Selection Process for FWSDA
1.2.1 Seismogram Segmentation
1.2.2 Waveform Selection
1.2.3 Misfit Measurement Selection
1.2.4 Fréchet Kernels for Waveforms Selected in the Wavelet Domain
1.3 Application of FWSDA in Southern California
1.3.1 Waveform Selection on Ambient-Noise Green’s Functions
1.3.2 Waveform Selection on Earthquake Recordings
1.3.3 Inversion Results after 18 times Adjoint Iteration
1.4 Summary and Discussion
References
2 Wavefield Representation, Propagation and Imaging Using Localized Waves: Beamlet, Curvelet and Dre
2.1 Introduction
2.2 Phase-Space Localization and Wavelet Transform
2.2.1 Time-Frequency Localization
2.2.2 Time-Scale Localization
2.2.3 Extension and Generalization of Time-Frequency, Time-Scale Localizations
2.3 Localized Wave Propagators: From Beam to Beamlet
2.3.1 Frame Beamlets and Orthonormal Beamlets
2.3.2 Beamlet Spreading, Scattering and Wave Propagation in the Beamlet Domain
2.3.3 Beam Propagation in Smooth Media with High-Frequency Asymptotic Solutions
2.3.4 Beamlet Propagation in Heterogeneous Media by the Local Perturbation Approach
2.4 Curvelet and Wave Propagation
2.4.1 Curvelet and Its Generalization
2.4.2 Fast Digital Transforms for Curvelets and Wave Atoms
2.4.3 Wave Propagation in Curvelet Domain and the Application to Seismic Imaging
2.5 Wave Packet: Dreamlets and Gaussian Packets
2.5.1 Physical Wavelet and Wave-Packets
2.5.2 Dreamlet as a Type of Physical Wavelet
2.5.3 Seismic Data Decomposition and Imaging/Migration Using Dreamlets
2.5.4 Gaussian Packet Migration and Paraxial Approximation of Dreamlet
2.6 Conclusions
Acknowledgement
References
3 Two-way Coupling of Solid-fluid with Discrete Element Model and Lattice Boltzmann Model
3.1 Introduction
3.2 Discrete Element Method and the ESyS-Particle Code
3.2.1 A Brief Introduction to the Open Source DEM Code: The ESyS-Particle
3.2.2 The Basic Equations
3.2.3 Contact Laws and Particle Interaction
3.2.4 Fracture Criterion
3.3 Lattice Boltzmann Method
3.3.1 The Basic Principle of LBM
3.3.2 Boundary Conditions of LBM
3.3.3 A Brief Introduction to the Open Source LBM Code: OpenLB
3.4 Two-way Coupling of DEM and LBM
3.4.1 Moving Boundary Conditions
3.4.2 Curved Boundary Conditions
3.4.3 Implementation of Darcy Flow in LBM
3.5 Preliminary Results
3.5.1 Bonded Particles Flow in Fluid
3.5.2 Fluid Flow in the Fractures
3.5.3 Hydraulic Fracture Simulation
3.6 Discussion and Conclusions
Acknowledgement
References
4 Co-seismic Damage and Post-Mainshock Healing of Fault Rocks at Landers, Hector Mine and Parkfield,
4.1 Introduction
4.2 Rock Damage and Healing on the Rupture Zone of the 1992 M7.4 Landers Earthquake
4.2.1 Landers Rupture Zone Viewed with FaultZone Trapped Waves
4.2.2 Fault Healing at Landers Rupture Zone
4.2.3 Additional Damage on the Landers Rupture Zone by the Nearby Hector Mine Earthquake
4.3 Rock Damage and Healing on the Rupture Zone of the 1999 M7.1 Hector Mine Earthquake
4.3.1 Hector Mine Rupture Zone Viewed with FZTWs
4.3.2 Fault Healing at Hector Mine Rupture Zone
4.4 Rock Damage and Healing on the San Andreas Fault Associated with the 2004 M6 Parkfield Earthquak
4.4.1 LowVelocity Damaged Structure of the San Andreas Fault at Parkfield from Fault Zone Trapped Wa
4.4.2 Seismic Velocity Variations on the San Andreas Fault Caused by the 2004 M6 Parkfield Earthquak
4.4.3 Discussion
4.5 Conclusion
Acknowledgment
References
5 Subsurface Rupture Structure of the M7.1 Darfield and M6.3 Christchurch Earthquake Sequence Viewed
5.1 Introduction
5.2 The Data and Waveform Analyses
5.2.1 The FZTWs Recorded for Aftershocks along Darfield/Greendale Rupture Zone
5.2.2 The FZTWs Recorded for Aftershocks along Christchurch/Port Hills Rupture Zone
5.3 Subsurface Damage Structure Viewed with FZTWs
5.4 3-D Finite-Difference Simulations of Observed FZTWs
5.5 Conclusion and Discussion
Acknowledgment
References
6 Characterizing Pre-shock (Accelerating) Moment Release: A Few Notes on the Analysis of Seismicity
6.1 Introduction
6.2 The ‘Interfering Events’ and the ‘Eclipse Method’
6.3 Comparing with Linear Increase: The BIC Criterion
6.4 The Time-Space-MC Mapping of the Scaling Coefficient, m(T, R,MC)
6.5 Removal of Aftershocks and the ‘De-clustered Benioff Strain’
6.6 ‘Crack-like’ Spatial Window for Great Earthquakes: The 2008 Wenchuan Earthquake
6.7 Looking into a Finite Earthquake Rupture: The 2004 Sumatra-Andaman Earthquake
6.8 Using Seismic Moment Tensors to Investigate the Moment Release: AMijR before the 2011 Tohoku Ear
6.9 Concluding Remarks and Discussion
6.10 Appendix: The Magnitude Conversion Problem, and the Completeness of an Earthquake Catalogue
6.10.1 Magnitudes
6.10.2 Conversion of Magnitudes
6.10.3 Completeness of an Earthquake Catalogue
References
7 Statistical Modeling of Earthquake Occurrences Based on External Geophysical Observations: With an
7.1 Introduction
7.2 The Data
7.3 Model Description
7.4 Results for Circles around the Individual Stations
7.5 Results for the 300 km Circle around Beijing
7.6 Results from the Tangshan Region
7.7 Probability Gains from Forecasts Based on Electrical Signals
7.8 Effect of Changes in the Background Seismicity
7.9 Conclusions
References

👤Yong-Gang Li
Department of Earth Sciences
University of Southern California
Research Professor

همچنین ببینید 👈:  The Story of the Earth in 25 Rocks: Tales of Important Geological Puzzles and the People Who Solved Them - داستان زمين در 25 سنگ‌: داستان‌هایی از معماهای مهم زمین‌شناسی و کسانی که آن‌ها را حل کرده‌اند

Expertise: Thoery, modeling and observation of fault zone seismidc waves. Earthquake fault zone structure and physical property,
crustal anisotropy observation and model of sheer-wave splitting. Seismic reflection and wideaye refraction


📚Publications

Li, Y. (2018, 07). Fault Continuity and Rupture Branching of the 2014 Mw 6.0 South Napa Earthquake Viewed by Fault-Zone
Trapped Waves. Poster Presentation at 2018 SCEC Annual Meeting. SCEC Contribution 8215
Li, Y., Catchings, R. D., & Goldman, M. R. (2018). Rupture Branching Structure of the 2014 Mw 6.0 South Napa, California
Earthquake Viewed by Fault-Zone Trapped Waves Generated by Explosions. Bulletin Seismological Society of America, (submitted).
SCEC Contribution 8137
Li, Y., Catchings, R. D., & Goldman, M. R. (2016, 08). Fault Damage Zone of the 2014 Mw 6.0 South Napa Earthquake, California,
Viewed from Fault-Zone Trapped Waves. Poster Presentation at 2016 SCEC Annual Meeting. SCEC Contribution 6450
Li, Y. (2017). Fault-Zone Guided Wave, Ground Motion, Landslide and Earthquake Forecast (pp232). Beijing and Boston, China and
USA: China High Education Press with De Gruyter. SCEC Contribution 8136
Li, Y. (2016). Seismic wave propagation in anisotropic rocks with applications to defining fractures in earth crust. Rock anisotropy,
fracture and earthquake assessment, (Chapter 1, pp. 11-141) Beijing and Boston, China and USA: China High Education Press with
De Gruyter SCEC Contribution 8135
Li, Y. (2016). Subsurface damage zone of the Calico Fault viewed by fault-zone trapped waves from teleseismic earthquakes.
Academic Perspective, 12, 7-23. SCEC Contribution 7164
Li, Y., Catchings, R. D., & Goldman, M. R. (2016). Subsurface Fault Damage Zone of the 2014 Mw 6.0 South Napa Earthquake,
California, Viewed from Fault-Zone Trapped Waves. Bull. Seism. Soc. Am, 106(No. 6). doi: doi:10.1785/0120160039. SCEC
Contribution 6168
Li, Y. (2014). Co-seismic damage and post-mainshock healing of fault rocks at Landers, Hector Mine and Parkfield, California viewed
by fault-zone trapped waves. Imaging, Modeling and Assimilation in Seismology, (Chapter 4, pp. 162-224) Beijing and Boston, :
China High Education Press with De Gruyter SCEC Contribution 1945
Li, Y., Xu, Z., & Li, H. (2014). Rock Damage Structure of the South Longmen-Shan Fault in the 2008 M8 Wenchuan Earthquake
Viewed with Fault-Zone Trapped Waves and Scientific Drilling. ACTA Geological Sinica (English Edition), 88(2), 444-467. SCEC
Contribution 1944
Li, Y., De Pascale, G. P., Quigley, M. C., & Gravley, D. (2014). Fault Damage Zones of the M7.1 Darfield and M6.3 Christchurch
Earthquakes Characterized by Fault-Zone Trapped Waves. Tectonophysics, 618, 79-101. doi: 10.1016/j.tecto.2014.01.029. SCEC
Contribution 1764
Li, Y., De Pascale, G. P., Quigley, M. C., & Gravely, D. (2013). Subsurface Rock Damage Structure of the M7.1 Darfield and M6.3
Christchurch Earthquake Sequence Viewed with Fault-Zone Trapped Waves (Geophysics Frontiers). Beijing & Boston, : China Higher
Education Press & Walter de Gruyter . SCEC Contribution 1696
Li, Y., Su, J., & Chen, T. (2012). Fault-Zone Trapped Waves at a Dip Fault: Documentation of Rock Damage on the Thrusting
Longmen-Shan Fault Ruptured in the 2008 M8 Wenchuan Earthquake (Series in Global Changes and Earth System Science). Boston,
: De Gluyter. SCEC Contribution 1669
Li, Y., Malin, P. E., & Cochran, E. S. (2012). Fault-zone trapped waves: High-Resolution Characterization of the Damage Zone on the
Parkfield San Andreas Fault at Depth. In Y. Li (Eds.), Imaging, Modeling and Assimilation in Seismology, (Series in Global Change
and Earth System Science, pp. 43) Boston, : DeGruyter SCEC Contribution 1321
Duan, B., Kang, J., & Li, Y. (2011). Deformation of Compliant Fault Zones Induced by Nearby Earthquakes:Theoretical
Investigations in Two Dimensions. Journal of Geophysical Research, 116(B3), 307. doi: 10.1029/2010JB007826. SCEC Contribution
1464
Cochran, E. S., Li, Y., Shearer, P. M., Barbot, S. D., Fialko, Y., & Vidale, J. E. (2009). Seismic and Geodetic Evidence for Extensive,
Long-Lived Fault Damage Zones. Geology, 37(4), 315-318. doi: 10.1130/G25306A.1. SCEC Contribution 1185
Li, Y. (2008). Seismic Study of the San Andreas Fault in California and the Longmen-Shan Fault Ruptured in the M8 Wenchuan
Earthquake in China on May 12, 2008. Los Angeles, : Chinese Scholars Association - Southern California. SCEC Contribution 1359
Li, Y., & Malin, P. E. (2008). San Andreas Fault Damage at SAFOD Viewed with Fault-Guided Waves. Geophysical Research Letters,
35, L08304. doi: 10.1029/2007GL032924. SCEC Contribution 1128
Li, Y., Chen, P., Cochran, E. S., & Vidale, J. E. (2007). Seismic Velocity Variations on the San Andreas Fault Caused by the 2004 M6
Parkfield Earthquake and Their Implications. Earth, Planets and Space, 59(1), 21-31. SCEC Contribution 962
Li, Y., Malin, P. E., & Vidale, J. E. (2007). Parkfield fault-zone guided waves: Low-velocity damage zone on the San Andreas fault at
depth near SAFOD site at Parkfield by fault-zone trapped waves. Scientific Drilling Journal,(Special Issue, No. 1), 73-77. doi:
10.2204 /iodp.sd.s01.09.2007. SCEC Contribution 1139
Li, Y., Chen, P., Cochran, E. S., Vidale, J. E., & Burdette, T. (2006). Seismic Evidence for Rock Damage and Healing on the San
Andreas Fault Associated with the 2004 M 6.0 Parkfield Earthquake. Bulletin of the Seismological Society of America, 96(4B), S349
-S363. doi: 10.1785/0120050803. SCEC Contribution 924
Cochran, E. S., Li, Y., Vidale, J. E., & Burdette, T. (2006). Anisotropy in the Shallow Crust Observed around the San Andreas Fault
Before and After the 2004 M 6.0 Parkfield Earthquake. Bulletin of the Seismological Society of America, 96(4B), S364-S375. doi:
10.1785/0120050804. SCEC Contribution 1080
Li, Y., Vidale, J. E., & Cochran, E. S. (2004). Low-Velocity Damaged Structure of the San Andreas Fault at Parkfield from Fault-Zone
Trapped Waves. Geophysical Research Letters, 31(12), L12S06, 1-5. doi: 10.1029/2003GL019044. SCEC Contribution 762
Li, Y., Vidale, J. E., Day, S. M., Oglesby, D. D., Cochran, E. S., & Field Working Group, . (2003). Postseismic Fault Healing on the
Rupture Zone of the 1999 M 7.1 Hector Mine, California, Earthquake. Bulletin of the Seismological Society of America, 93(2), 854-
869. doi: 10.1785/0120020131. SCEC Contribution 685
Li, Y., Vidale, J. E., Oglesby, D. D., Day, S. M., & Cochran, E. S. (2003). Multiple-Fault Rupture of the M7.1 Hector Mine, California,
Earthquake from Fault Zone Trapped Waves. Journal of Geophysical Research, 108(B3), 2165. doi: 10.1029/2001JB001456. SCEC
Contribution 596
Cochran, E. S., Vidale, J. E., & Li, Y. (2003). Near-fault anisotropy following the Hector Mine earthquake. Journal of Geophysical
Research, 108(B9), 2436. doi: 10.1029/2002JB002352. SCEC Contribution 1081
Vidale, J. E., & Li, Y. (2003). Damage to the shallow Landers fault from the nearby Hector Mine earthquake. Nature, 421, 524-526.
doi: 10.1038/nature01354. SCEC Contribution 1062
Li, Y., Vidale, J. E., Day, S. M., & Oglesby, D. D. (2002). Study of the 1999 M 7.1 Hector Mine, California, Earthquake Fault Plane by
Trapped Waves. Bulletin of the Seismological Society of America, 92(4), 1318-1332. doi: 10.1785/0120000909. SCEC Contribution
551
Li, Y., & Vernon, F. L. (2001). Characterization of the San Jacinto Fault Zone near Anza, California, from Fault Zone Trapped Waves.
Journal of Geophysical Research, 106(B12), 30671-30688. SCEC Contribution 598
Li, Y., & Vidale, J. E. (2001). Healing of the shallow fault zone from 1994-1998 after the 1992 M7.5 Landers, California, earthquake.
Geophysical Research Letters, 28(15), 2999-3002. SCEC Contribution 552
Li, Y., Chester, F. M., & Vidale, J. E. (2001). Shallow Seismic Profiling at the Punchbowl Fault Zone, Southern California. Bulletin of
the Seismological Society of America, 91(6), 1820-1830. doi: 10.1785/0120000050. SCEC Contribution 507
Li, Y., Vidale, J. E., Xu, F., & Aki, K. (2000). Depth-Dependent Structure of the Landers Fault Zone from Trapped Waves Generated
by Aftershocks. Journal of Geophysical Research, 105(B3), 6237-6254. SCEC Contribution 478
Li, Y., Aki, K., Vidale, J. E., & Xu, F. (1999). Shallow structure of the Landers fault zone from explosion-generated trapped waves.
Journal of Geophysical Research, 104(B9), 20257-20275. SCEC Contribution 471
Li, Y., Aki, K., & Vidale, J. E. (1998). A delineation of the Nojima fault ruptured in the M7.2 Kobe, Japan, earthquake of 1995 using
fault zone trapped waves. Journal of Geophysical Research, 103(B4), 7247-7263. SCEC Contribution 449
Li, Y., Vidale, J. E., Aki, K., Xu, H., & Burdette, T. (1998). Evidence of Shallow Fault Zone Strengthening After the 1992 M7.5
Landers, California, Earthquake. Science, 279(5348), 217-219. doi: 10.1126/science.279.5348.217. SCEC Contribution 416
Li, Y., Vernon, F. L., & Aki, K. (1997). San Jacinto fault zone guided waves: A discrimination for recently active fault strands near
Anza, California. Journal of Geophysical Research, 102(B6), 11689-11701. doi: 10.1029/97JB01050. SCEC Contribution 355
Li, Y., Madrid, J., Thurber, C. H., Malin, P. E., & Aki, K. (1997). Fault-Zone Guided Waves from Explosions in the San Andreas Fault,
Parkfield and Cienega Valley, California. Bulletin of the Seismological Society of America, 87(1), 210-221. SCEC Contribution 286
Li, Y. (1996). Shear Wave Splitting Observations and Implications on Stress Regimes in the Los Angeles Basin, California. Journal of
Geophysical Research, 101(B6), 13947-13961. doi: 10.1029/96JB00878. SCEC Contribution 285
Li, Y., & Vidale, J. E. (1996). Low-Velocity Fault-Zone Guided Waves: Numerical Investigaions of Trapping Efficiency. Bulletin of the
Seismological Society of America, 86(2), 371-378. SCEC Contribution 284
Li, Y., Teng, T., & Henyey, T. (1994). Shear-Wave Splitting Observations in the Northern Los Angeles Basin, Southern California.
Bulletin of the Seismological Society of America, 84(2), 307-323. SCEC Contribution 65
Li, Y., Aki, K., Adams, D., Hasemi, A., & Lee, W. H. (1994). Seismic Guided Waves Trapped in the Fault Zone of the Landers,
California, Earthquake of 1992. Journal of Geophysical Research, 99(B6), 11705-11722. SCEC Contribution 29
Steidl, J. H., Martin, A., Tumarkin, A. G., Lindley, G. T., Nicholson, C., Archuleta, R. J., Vernon, F. L., Edelman, A., Tolstoy, M.,
Chin, J., Li, Y., Robertson Haver, M., Teng, T., Scott, J. B., Johnson, D., & Magistrale, H. (1994). SCEC Portable Deployment
Following the 1994 Northridge Earthquake. Seismological Research Letters: Northridge Supplement, 65(3-4), 243. SCEC
Contribution 159
Li, Y., Vidale, J. E., Aki, K., Marone, C. J., & Lee, W. H. (1994). Fine Structure of the Landers Fault Zone; Segmentation and the
Rupture Process. Science, 265(5170), 367-370. doi: 10.1126/science.265.5170.367. SCEC Contribution 129


مطلب پیشنهادی

Planetary Geology – زمین‌شناسی سیاره‌ای

📘 زمین‌شناسی سیاره‌ای✍️ دکتر آنجلو پیو روسی، استفان ون گاسلت 📘 Planetary Geology ✍️ Angelo …

پاسخی بگذارید

Translate »